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OUTLIERS DETECTION IN SKEWED DISTRIBUTIONS: 

SPLIT SAMPLE SKEWNESS BASED BOXPLOT 
 

  

Abstract. Data analysis is the core heart of quantitative research. An 
important part of data analysis is outlier detection. Several outlier detection techniques 

have been developed in the past that include a popular technique named as Tukey’s 

boxplot. Tukey’s boxplot uses inter quartile range to detect outliers on both sides of 
median. This method works well in symmetric distributions while it constructs 

misleading fence in skewed distributions. Several amendments have been made in 

Tukey’s method to detect outliers in skewed distributions. Latest amendment is 

suggested by Hubert and Vandervieren who incorporated the exponent of medcouple 
multiplied by different constants conditioned on the direction of skewness. This paper 

provides a novel approach to fix the problem by splitting the data in two halves from 

the median and constructing fence separately on both sides of the median. Splitting 
process enables detection process efficiently, making it robust. Mathematical 

calculation of probability of Type-I error and interval width proved that this method 

has superiority on Tukey and Hubert and Vandervieren method. 
Keywords: Skewness, Outliers, Medcouple, Boxplot. 

 

JEL Classification: J13, C54 

 
1. Introduction 

Detection of outliers is very important in modeling, inference, and even data 
processing because outliers can lead to model misspecification, biased parameter 

estimation, and poor forecasting (Tsay, Pena and Pankratz, 2000). For univariate 
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distributions Tukey’s (1977) boxplot is a very popular tool for detection of outliers. 

However, it uses symmetric criteria, and can fail on skewed data sets. Many naturally 

occurring data sets are skewed, and Tukey’s boxplot fails to correctly detect outliers in 
such data sets. 

To solve this problem, Hubert and Vandervieren (2008) created a modified 

boxplot (henceforth HVBP) which uses a robust measure of skewness. Their technique 

has certain limitations, as this paper will explore. This paper introduces an alternative 
technique based on splitting the sample around the median and then applying Tukey’s 

technique separately on each half. This research will also show that newly introduced 

test improves on both the original Tukey technique, and the HVBP technique in terms 
of detecting outliers in skewed distributions. 

It is clear that the Tukey boxplot will not place the fences for outliers correctly 

in a skewed distribution. Because it uses the same measure of spread IQR to make the 
upper and lower fence, the upper fence will be too short for the long tail, and the lower 

fence will be too long for the short tail. This means that it will miss outliers in the short 

tail, and find extra outliers in the long tail. For the sake of clarity, we illustrate this 

phenomenon with a simple example 

2. Failure of Tukey-type symmetric techniques in skew distributions. 

The boxplot of Tukey consists of a lower boundary and an upper boundary, 

defined as: 

[𝐿      𝑈] = [𝑄1 −  𝑔 ∗ 𝐼𝑄𝑅        𝑄3 +  𝑔 ∗ 𝐼𝑄𝑅]…………..(1) 

Where L denotes lower bound or lower critical value and U represents upper bound or 

upper critical value, Qi  is the i-th quartile, and IQR is the difference of third and first 

quartile i.e. Q3 – Q1 is the interquartile range. L and U are called the lower and upper 
fences. In equation (1) value of constant g used by Tukey is 1.5. Data outside the fences 

is considered as outliers. The key issue to note here is that, in presence of outliers, 

distance from the central box to the lower fence and the upper fence is exactly the same, 
regardless of the level of skewness in the data. This causes problems in skew 

distributions as we illustrate with a simple example 

Consider a standard normal random variable Z i.e. N (0, 1). The first and third 

quartile are Q1=-0.675 and Q3=+0.675 so the interquartile range is IQR=1.35. The 
lower and upper fences constructed by Tukey are LCV = -2.698, and UCV=+2.698. 

For a standard normal, P(-2.698<Z<+2.698)=99.3% so under the null hypothesis 
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𝑍~𝑁(0,1), the Tukey test will make a type I error in classifying an observation as an 

outlier only in 0.7% of the cases. However, the situation changes when we consider the 

skew log normal random variable X=exp(Z). In this case, Q1=exp(-0.675)=0.51 and 
Q3=exp(0.675)=1.96, so IQR=1.45. By using Tukey’s boxplot LCV is -1.67. This 

lower fence is far below the smallest possible value of X which is 0. Similarly, UCV 

according to Tukey is 4.47. We have P(X<UCV)=P(Z<ln(4.47))=93%. Now the 

probability to a type I error on the upper side is 7%, while the probability of a Type-I 
error on the lower side is zero. By using the same tail (1.5 IQR) on both sides, the 

Tukey Boxplot makes the tail too long on the short side, and makes it too short on the 

long side of the skew distribution.  

This paper proposes a very simple fix for this problem. First split the sample at 

the median. Then apply the Tukey technique to both sides of the distribution 

separately. Since the IQR is now estimated separately on both sides of the sample, we 

get a short tail on the short side, and a long tail on the long side, fixing the problem for 
skewed samples. We call this the SSSBB: Split-Sample Skewness Based Boxplot. We 

illustrate how this works in the simple example of the lognormal given above. 

Applying this to the Lognormal distribution, we get Q1L= value of standard 
normal at 12.5 percentile = -1.15 and Q3L = Value of standard normal at 37.5 

percentile = -0.32, which leads to an IQR of 0.83, and an LCV =-1.15-1.5*0.83=-2.40 

hence by symmetry, UCV = +2.4. Now P(-2.4<Z<+2.4) = 98.4% so for the symmetric 
distribution, this procedure has a higher probability of type I error 1.6% compared to 

Tukey’s 0.7%. But this procedure now draws better fences for the Lognormal 

distribution. For lognormal distribution LCV is -0.299 which is closer to zero as 

compared to Tukey’s LCV which is -1.67. On the right side of the lognormal 
distribution UCV’s of Tukey and SSSBB are 4.47 and 5.84 respectively. So it may be 

observed that SSSBB’s upper critical value is extended than Tukey. By taking log of 

both critical values and the finding the probability of Type-I error, it may be noted that 
probability of Type-I error for Tukey and SSSBB are 6.72 and 3.89 respectively on the 

upper side after taking log of UCV of lognormal distribution. 

 

3. The Proposed Alternative based on Splitting the Sample 

As discussed in the introduction, this problem was also noted by Huber and 

Vandervieren, who have proposed a different alternative, which we label HVBP.  

In the paper, we will compare the three techniques on a number of different well 

known skewed distributions. Prior to undertaking a detailed comparison, we illustrate 
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how the three techniques perform on a simple small simulated data set from a log normal 

distribution. 

Table 1: Comparison of Techniques in Example Data Set from N (0, 1) 

N(0,1) N(0,1) Exp(N(0,1)) Exp(N(0,1)) Tukey Test SSSBB 

-0.41 0.57 0.66 1.76 Q1 0.63 Q1L 0.43 

-1.46 0.89 0.23 2.44 Q3 1.82 Q3L 0.68 

1.04 0.59 2.83 1.80 IQR 1.19 IQRL 0.26 

-0.39 -0.09 0.68 0.91 LCV -1.15 Q1R 1.40 

-0.86 -0.37 0.42 0.69 UCV 3.61 Q3R 2.68 

0.64 -0.45 1.90 0.64 HVBP IQRR 1.28 

-1.45 0.38 0.23 1.47 LCV 0.19 LCV 0.04 

-0.47 1.42 0.63 4.14 UCV 10.66 UCV 4.61 

-0.32 1.05 0.72 2.87 Min 0.23 

  -0.85 -0.34 0.43 0.71 Max 4.14 Skew 1.25 

Applying the three techniques on a simple data set of twenty observations from a 

lognormal, we observe that probabilities of Type-I error on short tail by Tukey, HVBP, 
and SSSBB are 0, 5.1 and 0.07 percent respectively. Probabilities of Type-I error on long 

tail are 10, 1 and 6 percent by Tukey, HVBP and SSSBB respectively for this sample of 

twenty observations. So the total Type-I error probabilities are 10, 6.1 and 6.07 for 
Tukey, HVBP and SSSBB respectively. On the other hand, when we look in intervals 

made by the techniques, it may be observed that Tukey’s, HVBP’s, and SSSBB interval 

widths are 4.76, 10.47 and 4.57 respectively. It is clear from these statistics that 

probability of Type-I error for Tukey is more than all techniques under comparison while 
probabilities of Type-I error for HVBP and SSSBB are almost same but interval made by 

HVBP is more than 130 percent larger than SSSBB. This illustrates the strengths of our 

newly introduced technique in a simple special case. Now we turn to a more extensive 
comparison. 

4. Hubert and Vandervieren’s Medcouple Based Alternative 

Noting the problems in detecting outliers in skewed distributions, Hubert and 

Vandervieren introduced a new technique for this purpose. Firstly, they noted that the 
classical measure of skewness is not robust and it is affected by outliers. They propose to 

use the Medcouple, introduced by Brys, Hubert, and Struyf (2003) as a robust alternative 

to classical skewness. Suppose 𝑋𝑛 = {𝑥1, 𝑥2, 𝑥3, … … … … … . . 𝑥𝑛} is a random sample 

from the univariate distribution under consideration. For xj> median denoted by 𝑚𝑒𝑑𝑘 

and xi< median, define skewness via the kernel functionℎ(𝑥𝑖 , 𝑥𝑗) where 

ℎ(𝑥𝑖 , 𝑥𝑗) =
(𝑥𝑗−𝑚𝑒𝑑𝑘)−(𝑚𝑒𝑑𝑘−𝑥𝑖)

(𝑥𝑗−𝑥𝑖)
 …………… (2) 
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 Note that this measures the ratio of how much xj exceeds the median relative to 

how much xi is below the median, which is a natural measure of skewness. Next, the 

medcouple takes the median over all such pairs of observations to arrive at a measure of 
skewness for the sample: 

𝑀𝐶 = ℎ(𝑥𝑖 , 𝑥𝑗)𝑥𝑖≤𝑚𝑒𝑑𝑘≤𝑥𝑗

𝑚𝑒𝑑 ……………                         (3) 

There are some complications in case of ties, which are ignored here, since these cannot 

arise in continuous distributions. This paper only deals with the continuous distributions. 

After considering several alternatives, Mia Hubert and Ellen Vandervieren 

(2008) proposed the following skewness-adjusted boxplot; we will call this HVBP:  

[𝐿      𝑈] = [𝑄1 −  1.5 ∗ 𝐼𝑄𝑅 ∗ 𝑒−3.5∗𝑀𝐶𝑄3 +  1.5 ∗ 𝐼𝑄𝑅 ∗ 𝑒4∗𝑀𝐶]  If MC >0 

[𝐿      𝑈] = [𝑄1 −  1.5 ∗ 𝐼𝑄𝑅 ∗ 𝑒−4∗𝑀𝐶  𝑄3 +  1.5 ∗ 𝐼𝑄𝑅 ∗ 𝑒3.5∗𝑀𝐶] If MC <0 

Where MC represents medcouple and IQR is the inter quartile range. In case of MC 

equals to zero implies that data is symmetric and by substituting zero value of MC 
leads to Tukey boxplot in both cases of the above HVBP equations. This modified 

boxplot computes the skewness and automatically makes the fence farther on the wide 

side and closer on the narrow side of the distribution. 

Mia Hubert and Ellen Vandervieren (2008) used medcouple and proposed 

adjustment in the Tukey’s technique as given in the previous section.  But this 

modification can make the interval of critical values too long, especially on the skewed 

side. For example, we can apply this technique to the above mentioned hypothetical 
example. Medcouple for this data set is 0.33 which correctly shows that distribution is 

right skewed. By applying HVBP technique the critical values are calculated as           

[-729.8  1028.1]. The critical values calculated by HVBP lie beyond the 
extremes of the real data [-200 540]. This technique has erroneously extended critical 

values away from the data on both sides.  

 

5. New Proposed Technique 

 

 This technique divides the data into two parts from the median, so that we have 

exactly 50% data on both lower and upper sides of the median. Treat these lower and 
upper sides as complete data sets and find the first quartile for the lower side Q1L, third 

quartile for the lower side Q3L and inter-quartile range for the lower side IQRL. 

Similarly, first quartile for upper side Q1R, third quartile for the upper side Q3R and 
inter-quartile range for the upper side IQRR is also computed. Lower and upper critical 

values for detecting outliers in the skewed distributions are suggested by subtracting 
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1.5 times the inter quartile range of the lower side from the first quartile of the lower 

side of the median and adding 1.5 times the inter quartile range of the upper side with 

the third quartile of the right side of the median. On the basis of the above splitting into 
two parts from the median which is based on the skewness of the data, we call new 

technique as Split Sample Skewness Based Boxplot hereafter SSSBB. Mathematically 

for the complete data set 

Q1L = 12.5th percentile, Q1R = 62.5th percentile,  
Q3L = 37.5th percentile, Q3R = 87.5th percentile, 

IQRL =Q3L-Q1L=37.5th percentile - 12.5th percentile, 

IQRR =Q3R–Q1R = 87.5th percentile - 62.5th percentile 

 Lower and upper boundaries are defined as 

[𝐿      𝑈] = [𝑄1𝐿 −  𝑔 ∗ 𝐼𝑄𝑅𝐿                    𝑄3𝑅 +  𝑔 ∗ 𝐼𝑄𝑅𝑅] 
 Where L is the lower critical value and U is upper critical value of the data. An 

observation outside these boundaries [𝐿      𝑈] would be labeled as an outlier. The value 
of g used in this technique is 1.5. By applying this technique on the same hypothetical 

data we calculated the boundaries as [-88.93 596.06]. It can be observed that 

SSSBB technique’s boundaries are close to data on both sides. This technique 
successfully detects the left outlier at -200 in contrast to Tukey’s and HVBP. Unlike 

Tukey, it also shows that 540 is not a right outlier.  

 

6.  Methodology 

Every outlier detection technique makes a fence to discriminate between the 

usual observations and the outliers. A fence is the boundary constructed by the formula 
of specific technique to detect outliers. The observations inside the fence are treated as 

normal while outside the fence those observations are treated as outliers. The 

comparison of outlier detection techniques is based on the match between the Type-I 
error made by any technique and interval width simultaneously. If the distribution of 

the data is skewed the classical outlier detection techniques tend to treat symmetrically 

both sides of the data. Therefore, it leaves significant data on long tail side of the 

distribution and covers extra area on the shorter tail of the distribution. As a result, an 
unusual observation on the shorter tail of the distribution cannot be detected. In order 

to ensure the match between the distribution and the fence, this paper considers fence 

as 95% area of the distribution by allowing 5% probability of type I error; that is, the 
central 95% values are treated as normal, while the top and bottom 2.5% are treated as 

potential outliers. It is expected that all techniques will construct their fence over the 

true 95% boundary. If any of the techniques under comparison commits sum of Type-I 
error probabilities on both sides more than 5% may be treated as weak. 
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H0: Sum of probabilities of Type-I error is less than or equal to 5 percent. 

H1: Sum of probabilities of Type-I error is more than 5 percent. 

Now here are two options. First, if sum of Type-I error probabilities is more than 5% in 
any technique under comparison then it is not tolerable and vice versa. Secondly, 

interval width will be compared as technique having smaller interval will have greater 

precision. This study compares both criteria at the same time. At first step if all the 

techniques fulfill this criterion then the technique constructing smaller interval is better 
and powerful being smaller interval with having high precision. 

The selected skewed distributions are chi square with 2, 5, 10, 15, 20 degrees 

of freedom. Beta with parameters (35, 2), (35, 3), (35, 4) and (35, 5) and lognormal 
distribution with parameters (0, 0.2), (0, 0.4), (0, 0.6), (0, 0.8), (0, 1) are taken for 

analysis. As this study compares HVBP technique in which medcouple is used. This 

study uses simulated value of medcouple for the above selected distributions with 
sample size of 300 and 10000 simulations. The simulated values are given as 

Table 2: Medcouple 

Beta Parameter Beta(35,1) Beta(35,2) Beta(35,3) Beta(35,4) Beta(35,5) Beta(35,6) 

Medcouple -0.32 -0.21 -0.16 -0.13 -0.11 -0.10 

Chi 

Square 

Degree of 

Freedom 

Chi square 

(2) 

Chi square 

(5) 

Chi square 

(10) 

Chi square 

(15) 

Chi square 

(20) 

Chi square 

(25) 

Medcouple 0.33 0.20 0.13 0.11 0.10 0.08 

Lognormal Parameters Logn (0,.2) Logn (0,.4) Logn(0,.6) Logn(0,.8) Logn(0,1)  

Medcouple 0.09 0.17 0.25 0.33 0.40  

 

As discussed in section 1 that Tukey technique constructs the fence around the 

standard normal having -2.698 and +2.698 as LCV and UCV respectively. For these 

boundaries of Tukey probability of Type-I error is 0.7% resulting 5.4 as an interval 
width.  As medcouple for standard normal distribution is zero. This implies that HVBP 

reduces to Tukey technique in standard normal generating the same probability of 

Type-I error and interval width. For SSSBB, LCV and UCV in standard normal are -
2.4 and +2.4 respectively resulting an interval width of 4.80. In case all the techniques 

under comparison have tolerable probability of Type-I error then a technique with 

smaller interval has an edge to have high precision. Comparison of Type-I error and 
interval width is done in the following tables and graphs given below. 

6.1 Comparison of Techniques in Beta Distribution 



 

 
 

 

 

 
 

Iftikhar Hussain Adil , Asad Zaman 

______________________________________________________________________ 

286 

DOI: 10.24818/18423264/54.3.20.17 

In probability theory and statistics, the beta distribution is a family of 

continuous probability distributions defined on the interval [0, 1] parameterized by two 

positive shape parameters, denoted by α and β, that appear as exponents of the random 
variable and control the shape of the distribution. Parameter selected for this 

distribution are (35,1), (35,2), (35,3), (35,4), (35,5), (35,6) keeping in mind that its 

shape should be negatively skewed. The computed values of classical skewness and 

medcouple are reported in column 2 of the Table 3. 

Table 3 reports the information of moment measure of skewness, medcouple, 

probability of Type-I error (short tail, long tail), LCV, UCV, and Interval width for the 

selected parameters in beta distribution by Tukey, HVBP and SSSBB techniques 
according to their formulae. Tukey’s technique probability of Type-I error on short tail 

is zero while it is 4.5% on long tail. So the sum of probabilities of Type-I error is 4.5% 

which is less than tolerance level of 5%. In HVBP maximum probability of Type-I 
error is 0.08% while it is 0.18% on long tail. Total probability of Type-I error by 

HVBP is always less than 1% which meets the criteria of 5% tolerance level. For 

SSSBB, the highest probabilities of Type-I error are 0.10% and 2.25% on short and 

long tail respectively. This implies that all three techniques under comparison meet 
first criterion.  

Table 3:Type-I Error Probability, Interval Width and Fences in Beta Distribution 
Parameters Moment 

measure of 

skewness 

Type-I Error Probability 

(short tail) 

Type-I Error Probability 

(long tail) 

Type-I Error Probability 

(total) 

Tukey HVBP SSSBB Tukey HVBP SSSBB Tukey HVBP SSSBB 

(35, 1) -1.84 0.0000 0.0000 0.0000 0.0450 0.0003 0.0225 0.0450 0.0003 0.0225 

(35, 2) -1.25 0.0000 0.0000 0.0000 0.0275 0.0009 0.0179 0.0275 0.0009 0.0179 

(35, 3) -0.98 0.0000 0.0000 0.0000 0.0205 0.0012 0.0157 0.0205 0.0012 0.0157 

(35, 4) -0.78 0.0000 0.0001 0.0000 0.0166 0.0015 0.0143 0.0166 0.0016 0.0144 

(35, 5) -0.71 0.0000 0.0005 0.0004 0.0140 0.0017 0.0134 0.0140 0.0021 0.0138 

(35, 6) -0.60 0.0000 0.0008 0.0010 0.0122 0.0018 0.0126 0.0122 0.0026 0.0136 

Parameters Medcouple 

SS = 300 

Lower Critical Values Upper Critical Values Interval Width 

Tukey HVBP SSSBB Tukey HVBP SSSBB Tukey HVBP SSSBB 

(35, 1) -0.32 0.92 0.79 0.90 1.04 1.01 1.01 0.12 0.21 0.11 

(35, 2) -0.21 0.86 0.77 0.85 1.04 1.01 1.01 0.19 0.24 0.17 

(35, 3) -0.16 0.81 0.74 0.80 1.04 1.00 1.01 0.23 0.26 0.20 

(35, 4) -0.13 0.77 0.71 0.77 1.03 0.99 1.00 0.25 0.28 0.23 

(35, 5) -0.11 0.74 0.68 0.74 1.02 0.98 0.98 0.28 0.30 0.24 

(35, 6) -0.10 0.71 0.66 0.71 1.01 0.97 0.97 0.29 0.31 0.26 

For comparison of interval width, it can be observed from Table 3 that HVBP 

and SSSBB constructs largest and smallest interval respectively in all cases. Here we 

compare the shortest and highest percentage difference between Tukey and HVBP, 
SSSBB and HVBP, and Tukey and SSSBB. In β (35,6) which is less skewed, HVBP 
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interval is (0.31-0.29)/0.29=6.9% larger than the interval made by Tukey’s technique. 

And for β (35, 1) which is highly skewed, HVBP interval is 75% larger than Tukey’s. 

 

 

  

In comparison of HVBP and SSSBB with respect to interval width in β (35, 6), HVBP 

interval is 19.2% larger. For β (35, 1), HVBP interval is 91% larger than SSSBB’s 
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Figure 1:     Comparison of Type I Error and Interval Width
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interval. Finally, for β (35, 6) Tukey’s interval is 11.5% larger and in β (35, 1) it is 

9.1% larger. Figure 1 shows clearly the interval widths and probability of type on both 

sides by each technique in beta distribution. 

Table 4: Type-I Error Probability, Interval Width and Fences in χ
2 
Distribution 

Degree 

of 

freedom 

Moment 

measure of 

skewness 

Type-I Error Probability 

(short tail) 

Type-I Error Probability 

(long tail) 

Type-I Error Probability 

(total) 

Tukey HVBP SSSBB Tukey HVBP SSSBB Tukey HVBP SSSBB 

25 0.57 0.0000 0.0021 0.0026 0.0125 0.0027 0.0134 0.0126 0.0049 0.0159 

20 0.63 0.0000 0.0019 0.0020 0.0138 0.0026 0.0139 0.0138 0.0045 0.0159 

15 0.73 0.0000 0.0014 0.0011 0.0158 0.0025 0.0147 0.0158 0.0038 0.0159 

10 0.89 0.0000 0.0005 0.0002 0.0193 0.0022 0.0160 0.0193 0.0027 0.0162 

5 1.26 0.0000 0.0000 0.0000 0.0280 0.0015 0.0188 0.0280 0.0015 0.0188 

2 2 0.0000 0.0000 0.0000 0.0481 0.0005 0.0241 0.0481 0.0005 0.0241 

Degree 

of 

freedom 

Medcouple 

SS = 300 

Lower Critical Values Upper Critical Values Interval Width 

Tukey HVBP SSSBB Tukey HVBP SSSBB Tukey HVBP SSSBB 

25 0.08 5.84 9.45 9.68 43.44 49.10 43.18 37.60 39.66 33.50 

20 0.10 2.89 6.45 6.50 36.39 42.21 36.37 33.50 35.76 29.87 

15 0.11 0.22 3.66 3.56 29.06 34.99 29.30 28.83 31.33 25.74 

10 0.13 -1.98 1.29 1.03 21.27 27.47 21.83 23.25 26.18 20.80 

5 0.20 -3.25 -0.31 -0.71 12.55 19.63 13.54 15.80 19.93 14.25 

2 0.33 -2.72 -0.46 -0.74 6.07 15.12 7.45 8.79 15.59 8.20 

6.2 Comparison of Techniques in Chi Square Distribution 

 Table 4 reports the information of moment measure of skewness, medcouple, 

probability of Type-I error (short tail, long tail), LCV, UCV and Interval width for the 
selected degree of freedom in chi square by Tukey, HVBP and SSSBB techniques 

according to their formulae. Looking at the Type-I error probability on short tail, 

Tukey’s probability of Type-I error is zero and on long tail it is 1.25% in chi square 

(25). Same probability of Type-I error is 0 and 4.81% respectively in chi square (2). So 
total Type-I error probability is less than the level of tolerance which is 5 percent. 

Observing the short and long tailed probabilities for chi square (25) in HVBP is 0.21% 

and 0.27% respectively concluding the sum of probabilities is less the tolerance level 
of 5%. Similarly, for high skewed data in chi square (2) short and long tailed 

probabilities of Type-I error are 0 and 0.05% respectively resulting sum less than 5 

percent. So HVBP fulfills criterion 1 for less and high skewed data. Considering 

SSSBB for least skewed chi square (25), on short and long tail probability of Type-I 
error is 0.26 and 1.34 whose sum is 1.59 percent which is less than 5 % level of 

tolerance. For high skewed data in chi square (2) probability of Type-I error is 0 and 
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2.41 percent respectively. So the total Type-I error probability is less than 5% and we 

conclude that all three techniques fulfill criterion of Type-I error probability less than 

5%. Checking for the second criterion of interval width, Table 4 reports that the largest 
interval width by HVBP and smallest by SSSBB. 

 

 

 If we check the interval width relatively, it may be observed that in chi square 

(25) interval width of HVBP is larger by 5.48% and 18.39% than Tukey and SSSBB 

respectively. For chi square (2) interval width of HVBP is 77.36% and 90.12% larger 

than Tukey and SSSBB respectively. Comparing Tukey and SSSBB interval width of 
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Figure 2: Comparison of Type I Error and Interval Width
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Tukey is 12.23% and 7.19% larger than SSSBB in chi (25) and chi square (2) 

respectively. Figure 2 reports the probability of Type-I error on short and long tail for 

techniques under comparison. This figure also clears that interval width of HVBP is 
always higher followed by Tukey technique.  

Table 5. Type-I Error Probability, Interval Width, and Fences in Lognormal 

   Distribution 

Parameters Moment 

measure of 

skewness 

Type-I Error Probability 

(short tail) 

Type-I Error Probability 

(long tail) 

Type-I Error Probability 

(total) 

Tukey HVBP SSSBB Tukey HVBP SSSBB Tukey HVBP SSSBB 

(0, 0.2) 0.61 
0.000 0.003 0.003 0.014 0.003 0.014 0.014 0.006 0.018 

(0, 0.4) 1.32 
0.000 0.002 0.000 0.029 0.003 0.021 0.029 0.005 0.021 

(0, 0.6) 2.26 
0.000 0.001 0.000 0.046 0.004 0.027 0.046 0.005 0.027 

(0, 0.8) 3.69 
0.000 0.000 0.000 0.062 0.005 0.033 0.062 0.005 0.033 

(0, 1) 6.18 
0.000 0.000 0.000 0.078 0.006 0.039 0.078 0.006 0.039 

Parameters Medcouple 

SS = 300 

Lower Critical Values Upper Critical Values Interval Width 

Tukey HVBP SSSBB Tukey HVBP SSSBB Tukey HVBP SSSBB 

(0, 0.2) 0.09 0.47 0.57 0.58 1.55 1.72 1.55 1.08 1.14 0.97 

(0, 0.4) 0.17 -0.06 0.32 0.26 2.13 2.95 2.26 2.18 2.63 2.00 

(0, 0.6) 0.25 -0.58 0.15 0.01 2.75 4.92 3.17 3.33 4.77 3.15 

(0, 0.8) 0.33 -1.12 0.04 -0.17 3.41 7.99 4.34 4.53 7.95 4.51 

(0, 1) 0.40 -1.67 -0.04 -0.30 4.14 12.62 5.84 5.81 12.66 6.13 

6.3 Comparison of Techniques in Lognormal Distribution 

 Table 5 reports the information of moment measure of skewness, medcouple, 

probability of Type-I error (short tail, long tail), LCV, UCV, and interval width for the 
selected parameters in lognormal distribution by Tukey, HVBP, and SSSBB techniques 

according to their formulae. First comparing Type-I error probability it may be 

observed that probability of Type-I error for all techniques. Tukey has 0% probability 
of Type-I on short tail of log normal distribution for all selected parameters. On long 

tail the minimum probability of Type-I error is 1.4% while maximum is 7.8%. Hence 

for highly skewed data Tukey technique failed to the meet first criterion of committing 
Type-I error less than five percent. The second technique HVBP has 0.3% maximum 

probability of Type-I error on short tail. On the long tail it also has a maximum of 

0.6% probability of Type-I error so total probability of Type-I error is less than 5% and 
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HVBP passed this criterion. Considering SSSBB, its maximum probability of Type-I 

error is 0.3% and 1.4% on short tail and long tail respectively. 

While comparing interval width we compare HVBP first with the remaining 
two as it has largest interval ever. It has 5.55% and 17.52% larger interval than Tukey 

and SSSBB respectively in lognormal (0, 0.2). In high skewed data like lognormal (0, 

1) it has 118% and 107% larger interval than Tukey and SSSBB. Comparison of Tukey 

and SSSBB tells that in less skewed data, Tukey constructed a larger interval than 
SSSBB by 11% in lognormal (0, 0.2). Interestingly Tukey constructed a smaller 

interval than SSSBB in high skewed data. In lognormal (0, 1) interval width of Tukey 

is 5.5% smaller than SSSBB. The important point to note here is that for these specific 
parameters Tukey did not meet first criterion of probability of Type-I error less than 

five percent.  

 

0

.0
01

.0
02

.0
03

P
ro

ba
bi

lit
y 

of
 T

yp
e 

I E
rr

or

1 2 3 4 5
Parameters

Tukey SSSBB HVBP

Short Tail

Lognormal Type I Error Probability

0

.0
2

.0
4

.0
6

.0
8

1 2 3 4 5
Parameters

Tukey SSSBB HVBP

Long Tail

Lognormal Type I Error Probability

Figure 3: Comparison of Type I Error and Interval Width



 

 
 

 

 

 
 

Iftikhar Hussain Adil , Asad Zaman 

______________________________________________________________________ 

292 

DOI: 10.24818/18423264/54.3.20.17 

 
 

7. Applications: 

Data for baby birth weight has been taken from Agha Khan Hospital, Karachi. 
Here our assumption is that survivals of the babies depend upon their birth weight. So if a 

baby has joined this world with low birth weight he/she is more vulnerable to death as 

compared to a baby with higher birth weight. According to McIntire et al. (1999), infants 
born with low birth weight are more likely to die or succumb to morbidity. Vangen et.al 

(2002) proved that heavier is better. Babies with low birth weight, either due to short 

gestation period or because of fetal growth constraint, are at high risk for short- and long-

term disabilities and death (Schieve et al, 2002). Checkup of very low birth weight 
children points toward increased deaths among all subpopulations. 

 There is a consensus over the role of socioeconomic conditions of the family and 

educational background, especially mother’s education, in the survival of the infant. Also 
medical facilities have improved to the extent that a baby with very low birth weight 

might survive by availing these facilities and a baby with relatively higher birth weight 

from low income family might not due to unavailability of medical facilities. But as it is 

mentioned above that the data have been taken from the similar income group (people 
approaching Agha khan hospital are well off and from educated families and can bear 

any cost in monetary terms for survival of their children). Agha Khan Hospital is one of 

the most efficient hospitals with latest facilities and equipment as compared with public 
sector hospitals. So it may be assumed that data belongs to a similar group with respect to 
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income and education and is comparable. Keeping remaining things constant, the 

probability of the survival increases as birth weight increases and vice versa. 

 

Data consisting of 3613 observations of baby birth weight along with their 

follow up data till 4th week (28th day). Minimum weight is 500 grams and the highest 

weight is 5000 grams. Average weight is 2974 grams (nearly 3kg) and total deaths up to 
4th week are nineteen. Mortality among the total population is just 0.5 percent. According 

to definition of low birth weight, an infant having weight less than 2500 grams is treated 

as low weight. This data itself proves the claim that low birth weight babies have more 

chances of mortality, as it can be observed that Tukey’s technique has detected 26 
observations as left outliers while proposed technique SSSBB has detected 16 

observations on left side as outlier. By mining into data it was observed that there are five 

deaths in both cases (either in Tukey’s or SSSBB). So it can be said that just 0.7% data 
(by Tukey’s technique) and 0.4% data (by SSSBB) captures more than 25% of the deaths 

from the whole data set. This finding corroborates the claim that birth weight has a very 

close relation with mortality; secondly it shows the improvement of the proposed test on 

Tukey’s as Tukey’s technique detected the same number of deaths from 0.7% of the data 
while SSSBB from 0.4 percent. That is, newly introduced test is performing more 

efficiently than Tukey’s does.  

7.1 Comparison of Tukey’s Technique, HVBP, and SSSBB in Baby Birth 

  Weight Data 

 According to the assumption that birth weight has close relation with the 

survival, the babies with higher birth weights are more likely to survive than low birth 
weight babies. For this purpose, we should compare the left outliers (babies vulnerable 

for death due to low weight) for the mortality. 
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 Left outliers detected by Tukey’s technique are 26 while left outliers detected by 

SSSBB are 16. By analyzing the data with respect to left outliers we see that there are 5 

deaths in both cases (in 26 left outliers by Tukey and 16 left outliers by SSSBB). So we 
can say that performance of Tukey’s technique is 19.23% while the performance of 

SSSBB is 31.25%. Technically speaking Tukey technique is attempting type I error as it 

is detecting real observations as outliers. It can also be observed that deaths are also 

inliers so we compare the total number of deaths with respect to total number of outliers 
detected. Tukey’s has detected 111 outliers in total while SSSBB has detected 29 outliers 

so the performance of Tukey’s as a whole is 17% while performance of SSSBB is 66 

percent. 

Table 6. Outliers and IW for all Techniques in BBW
*
 Data 

Technique Left OL Right OL Total OL LCV UCV Interval Width 

Tukey 26 85 111 1950 3950 2000 

SSSBB 16 13 29 1900 4250 2350 

HVBP 5 180 185 1621.10 3745.6 2124.5 
*BBW: Baby Birth Weight 

Table 7. Performance Comparison in BBW
*
 Data  

Technique 

Left OL Performance left outliers Overall Performance 

TUKEY 26 19.23% 17.12% 

SSSBB 16 31.25% 65.52% 

HVBP 5 40.00% 10.27% 

* 

BBW: Baby Birth Weight 

 In comparison of all techniques under consideration we see that HVBP is 

leading all the techniques under comparison by detecting just 5 left outliers and two 
deaths in these 5 outliers performing at 40% while SSSBB seems to chase it by 31% 

performance. Since deaths are also inliers so looking at total outlier’s performance we 

see that HVBP have detected 180 right outliers and its performance falls drastically at 

10.27% while SSSBB improves its performance from 31.25% to 65.52% by just 
detecting 13 outliers on the right side leading all the techniques. 

 

8. Discussion and Conclusion 

It may be observed that HVBP has the least probability of Type-I error in all 
selected distributions followed by SSSBB. Tukey technique has generally the least 
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probability of Type-I error on short tail while it has more probability of Type-I error on 

long tail. It was also observed that in extreme skewed distribution Tukey technique 

constructs misclassified interval and it may also commit probability of Type-I error more 
than 5 percent. Split sample skewness based boxplot has less total probability of Type-I 

error than Tukey but it has more probability of Type-I error than HVBP. On the other 

hand, we observe that Tukey generally constructs medium interval except one case under 

consideration. Interval width of HVBP is higher in all cases of distributions under 
consideration. Even sometimes it is more than double than Tukey’s and SSSBB’s interval 

width. A large interval width means covering more area under the curve and reducing 

precision. So it may be inferred from above discussion that HVBP commits Type-I error 
less but constructs larger interval. Tukey technique sometimes commits Type-I error 

more than 5% and is condemnable with respect it. Also, its interval size is larger than 

SSSBB. On the other hand, we see that SSSBB constructs smaller interval and have 
Type-I error probability less than 5% in all cases. Figure 3 also shows the interval width 

of HVBP is ever larger followed by Tukey technique. Just for lognormal (0, 1) interval 

width of SSSBB is higher than Tukey’s. 

9. Recommendations 

From the above discussion it is recommended that although Tukey’s technique 

is bit easier than SSSBB but it fails to detect outlier in skewed distribution, hence for 
the safe side SSSBB should be used in skewed distributions. With certainty of 

distribution being symmetric, Tukey’s technique should be used. In case of highly 

skewed distribution and with interest on the short tail, HVBP may be used having 
low probability of Type-I error without care of precision. 
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